Respuesta :

Given:

The measure of three sides of a triangle are 8, 7 and 14.

To find:

The measure of the angle opposite the side of length 8.

Solution:

According to the Law of Cosine:

[tex]\cos A=\dfrac{b^2+c^2-a^2}{2bc}[/tex]

Let a=8, b=7 and c=14, then by using Law of Cosine, we get

[tex]\cos A=\dfrac{7^2+14^2-8^2}{2(7)(14)}[/tex]

[tex]\cos A=\dfrac{49+196-64}{196}[/tex]

[tex]\cos A=\dfrac{181}{196}[/tex]

Taking cos inverse on both sides.

[tex]A=\cos^{-1}\dfrac{181}{196}[/tex]

[tex]A=22.561328[/tex]

[tex]A\approx 22.6[/tex]

Therefore, the measure of the angle opposite the side of length 8 is 22.6 degrees.