Respuesta :

Given:

The sequence is 2, 4, 8, 16,... .

To find:

The explicit formula for the sequence and use it to find the eleventh teen in the sequence.

Solution:

We have,

2, 4, 8, 16,...

It is a GP because the ratio between two consecutive terms are same..

Here,

First term: [tex]a = 2[/tex]

Common ratio: [tex]r=\dfrac{a_2}{a_}[/tex]

[tex]r=\dfrac{4}{2}[/tex]

[tex]r=2[/tex]

The explicit formula of GP is:

[tex]a_n=ar^{n-1}[/tex]

Putting [tex]a=2,r=2[/tex], we get

[tex]a_n=2(2)^{n-1}[/tex]

Put n=11 to find the 11th term of the given sequence.

[tex]a_{11}=2(2)^{11-1}[/tex]

[tex]a_{11}=2(2)^{10}[/tex]

[tex]a_{11}=2(1024)[/tex]

[tex]a_{11}=2048[/tex]

Therefore, the correct option is D.