Respuesta :

Given:

The function is

[tex]F(x)=\dfrac{2}{7}x+4[/tex]

To find:

The inverse function of the given function.

Solution:

We have,

[tex]F(x)=\dfrac{2}{7}x+4[/tex]

Putting F(x)=y, we get

[tex]y=\dfrac{2}{7}x+4[/tex]

Interchange x and y.

[tex]x=\dfrac{2}{7}y+4[/tex]

Subtract 4 from both sides.

[tex]x-4=\dfrac{2}{7}y[/tex]

Multiply both sides by 7.

[tex]7(x-4)=2y[/tex]

[tex]7x-28=2y[/tex]

Divide both sides by 2.

[tex]\dfrac{7x-28}{2}=y[/tex]

[tex]\dfrac{7}{2}x-14=y[/tex]

[tex]y=\dfrac{7}{2}x-14[/tex]

Putting [tex]y=F^{-1}(x)[/tex], we get

[tex]F^{-1}(x)=\dfrac{7}{2}x-14[/tex]

Therefore, the required inverse function is [tex]F^{-1}(x)=\dfrac{7}{2}x-14[/tex].