Respuesta :

Answer:

1. DC = AB = 4 ft

2. BD = 10.80 ft

3. m<CED = [tex]90^{0}[/tex]

4. m<EBC = [tex]65^{o}[/tex]

Step-by-step explanation:

From the given quadrilateral,

Given: AB = 4 ft, AD = 10 ft and m<BAE = 65.

1. DC = AB = 4 ft (opposite sides of a parallelogram are equal)

2. Applying the Pythagoras theorem to ΔABD, we have;

[tex]/hyp/^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]

[tex]BD^{2}[/tex] = [tex]4^{2}[/tex] + [tex]10^{2}[/tex]

       = 16 + 100

       = 116

BD = [tex]\sqrt{116}[/tex]

     = 10.7703

BD = 10.80 ft

3. m<CED = [tex]90^{0}[/tex] (the diagonals bisects each other at right angle)

4. m<ABC + m<BAC + m<ACB = 180

90 + 65 + m<ACB = 180

m<ACB = 180 - 155

m<ACB = [tex]25^{0}[/tex]

So that,

m<BEC + m<EBC + m<ECB = 180

90 + m<EBC + 25 = 180

m<EBC = 180 - 115

m<EBC = [tex]65^{o}[/tex]