Answer:
[tex]1 + 2\sqrt{2i}[/tex]
Step-by-step explanation:
The expression is presented below:
[tex]= \frac{(5 + \sqrt2i) }{(1 - \sqrt{2i)}}\\\\= \frac{(5 + \sqrt2i) }{(1 - \sqrt{2i)}} \times \frac{1 + \sqrt{2i)}}{1 + \sqrt{2i)}}\\\\= \frac{5 + 5\sqrt{2i} + \sqrt{2i} - 2 }{1 + 2} \\\\= \frac{3 + 6\sqrt{2i} }{3}\\\\= \frac{3(1 + 2\sqrt{2i}) }{3} \\\\= 1 + 2\sqrt{2i}[/tex]
The above represents an expression