Respuesta :

Answer:

(A) Alternate interior angles theorem

(B) Reflexive property

(C) Given

(D) SAS rule of congruency

(E) CPCTC

(F)  If both pairs of opposite sides of a parallelogram are congruent, then the quadrilateral is a parallelogram

Step-by-step explanation:

The two column proof required to prove that EFGH is a parallelogram is presented as follows;

Statement         [tex]{}[/tex]                    Reason

[tex]\overline{FG}[/tex]║[tex]\overline{EH}[/tex]       [tex]{}[/tex]                         Given

∠FGE ≅ ∠HEG       [tex]{}[/tex]               Alternate interior angles theorem

[tex]\overline{EG}[/tex] ≅ [tex]\overline{EG}[/tex]        [tex]{}[/tex]                      Reflexive property

[tex]\overline{FG}[/tex] ≅ [tex]\overline{EH}[/tex]       [tex]{}[/tex]                       Given

ΔFEG ≅ ΔHEG       [tex]{}[/tex]               SAS rule of congruency

[tex]\overline{FE}[/tex] ≅ [tex]\overline{HG}[/tex]       [tex]{}[/tex]                      CPCTC

EFGH is a parallelogram  [tex]{}[/tex]    If both pairs of opposite sides of a parallelogram are congruent, then the quadrilateral is a parallelogram

Where CPCTC stands for Congruent Parts of Congruent Triangles are Congruent