Find sin X, cos X, and tan X as
a fraction in simplest form.

Answer:
sin X = [tex]\frac{4}{5}[/tex]
cos X = [tex]\frac{3}{5}[/tex]
tan X = [tex]1\frac{1}{3}[/tex]
Step-by-step explanation:
First, find what the hypothenuse is:
[tex]c^{2} = a^{2} + b^{2}[/tex]
[tex]c^{2} = 18^{2} + 24^{2}[/tex]
[tex]c^{2} = 324 + 576[/tex]
[tex]\sqrt{c^{2}} = \sqrt{900}[/tex]
c = 30
[tex]sine = \frac{opposite}{hypothenuse}\\\\[/tex]
sin x = [tex]\frac{24}{30} = \frac{4}{5}[/tex]
[tex]cosine = \frac{adjacent}{hypothenuse}[/tex]
cos x = [tex]\frac{18}{30} = \frac{3}{5}[/tex]
[tex]tan = \frac{opposite}{adjacent}[/tex]
tan x = [tex]\frac{24}{18} = 1\frac{6}{18} = 1\frac{1}{3}[/tex]
Answer:
sin X = 4/5, or 0.8
cos X = 3/5, or 0.6
tan X = 4/3, or 1.333...
Step-by-step explanation:
Recall that where "o" ≡ "opposite side", "a" ≡ "adjacent side" and "h" ≡ "hypotenuse", then we have three definitions for those function
sin = o/h
cos = a/h
tan = o/a
Before solving two of these then, we'll need to know the length of the hypotenuse, so we'll apply the Pythagorean theorem to find it:
a² = b² + c²
h² = 24² + 18²
h = √(576 + 324)
h = √900
h = 30
So for X, the sine is the length of the opposite side, divided by the length of the hypotenuse, or 24/30:
24 / 30
= 4 / 5
= 0.8
The cosine of x is:
18 / 30
= 3 / 5
= 0.6
Finally the tan of x is:
24 / 18
4 / 3
1.333...