Respuesta :

Space

Answer:

[tex]\displaystyle y - 5 = 2(x - 8)[/tex]

General Formulas and Concepts:

Symbols

  • e (Euler's number) ≈ 2.7182

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Distributive Property

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

Functions

Point-Slope Form: y - y₁ = m(x - x₁)

  • x₁ - x coordinate
  • y₁ - y coordinate
  • m - slope

Slope-Intercept Form: y = mx + b

  • m - slope
  • b - y-intercept

Algebra II

  • Logarithms - ln and e

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Slope Fields

Solving Differentials - Integrals

Integration Constant C

U-Substitution

ln Integration: [tex]\displaystyle \int {\frac{1}{x}} \, dx = ln|x| + C[/tex]

Step-by-step explanation:

*Note:

When solving differential equations in slope fields, disregard the integration constant C for variable y.

Step 1: Define

[tex]\displaystyle \frac{dy}{dx} = \frac{y - 5}{x - 8}[/tex]

x = 9, y = 7

Step 2: Rewrite Differential

Rewrite Leibniz Notation using Separation of Variables.

  1. [Separation of Variables] Isolate x's together:                                             [tex]\displaystyle dy = \frac{y - 5}{x - 8}dx[/tex]
  2. [Separation of Variables] Isolate y's together:                                             [tex]\displaystyle \frac{1}{y - 5}dy = \frac{1}{x - 8}dx[/tex]

Step 3: Integrate Pt. 1

Solving general form of differential using integration.

  1. [Differential] Integrate both sides:                                                                 [tex]\displaystyle \int {\frac{1}{y - 5}} \, dy = \int {\frac{1}{x - 8}} \, dx[/tex]

Step 4: Identify Variables

Set up u-substitution for right integral.

Integral w/ respect to y

u = y - 5

du = dy

Integral w/ respect to x

z = x - 8

dz = dx

Step 5: Integrate Pt. 2

  1. [Integrals] U-Substitution:                                                                               [tex]\displaystyle \int {\frac{1}{u}} \, du = \int {\frac{1}{z}} \, dz[/tex]
  2. [Integrals] ln Integration:                                                                                [tex]\displaystyle ln|u| = ln|z| + C[/tex]
  3. Back-Substitute:                                                                                             [tex]\displaystyle ln|y - 5| = ln|x - 8| + C[/tex]
  4. [Equality Property] Raise e on both sides:                                                    [tex]\displaystyle e^{ln|y - 5|} = e^{ln|x - 8| + C}[/tex]
  5. Simplify:                                                                                                          [tex]\displaystyle |y - 5| = C|x - 8|[/tex]

General Form: [tex]\displaystyle |y - 5| = C|x - 8|[/tex]

Step 6: Solve Particular Solution

Since both sides have absolute value, assume that the particular solution will be positive.

  1. Substitute in variables [General Form]:                                                         [tex]\displaystyle |7 - 5| = C|9 - 8|[/tex]
  2. [Particular] |Absolute Value| Subtract:                                                           [tex]\displaystyle |2| = C|1|[/tex]
  3. [Particular] Evaluate absolute values:                                                         [tex]\displaystyle 2 = C(1)[/tex]
  4. [Particular] Multiply:                                                                                        [tex]\displaystyle 2 = C[/tex]
  5. [Particular] Rewrite:                                                                                       [tex]\displaystyle C = 2[/tex]

Substituting integration constant C into the general form:

Particular Solution (in Point-Slope Form): [tex]\displaystyle y - 5 = 2(x - 8)[/tex]

Particular Solution (in Slope-Intercept Form): [tex]\displaystyle y = 2x - 11[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e