Use the long division method to find the result when x^3+7x^2+12x+6x 3 +7x 2 +12x+6 is divided by x+1x+1. If there is a remainder, express the result in the form q(x)+\frac{r(x)}{b(x)}q(x)+ b(x) r(x) ​ .

Respuesta :

Answer:

By long division (x³ + 7·x² + 12·x + 6) ÷ (x + 1) gives the expression;

[tex]x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}[/tex]

Step-by-step explanation:

The polynomial that is to be divided by long division is x³ + 7·x² + 12·x + 6

The polynomial that divides the given polynomial is x + 1

Therefore, we have;

[tex]\ \ \ \ \ \ \ \ \ \ \ \ x^2 + 5\cdot x + 7\\ (x + 1) \sqrt{x^3 + 7\cdot x^2 +12\cdot x + 6} \\\ {} \ {} \ {} \ \ {} \ {} \ {} \ {} \ {} \ {} \ {} \ \ x^3 + 2 \cdot x^2 \\\ \ \ \ {} \ \ {} \ {} \ {} \ \ {} \ {} \ \ \ {} \ {} \ {} \ \ {} \ {} \ {} \ \ 5 \cdot x^2 + 12\cdot x + 6\\ \ {} \ {} \ {} \ {} \ {} \ {} \ \ {} \ {} 5 \cdot x^2 + 5\cdot x\\\ 7\cdot x+6\\7\cdot x+7\\-1[/tex]

(x³ + 7·x² + 12·x + 6) ÷ (x + 1) = x² + 5·x + 7 Remainder -1

Expressing the result in the form [tex]q(x) + \dfrac{r(x)}{b(x)}[/tex], we have;

[tex](x^3 + 7\cdot x^2 + 12 \cdot x + 6)\div (x + 1) = x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}[/tex]