Answer:
By long division (x³ + 7·x² + 12·x + 6) ÷ (x + 1) gives the expression;
[tex]x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}[/tex]
Step-by-step explanation:
The polynomial that is to be divided by long division is x³ + 7·x² + 12·x + 6
The polynomial that divides the given polynomial is x + 1
Therefore, we have;
[tex]\ \ \ \ \ \ \ \ \ \ \ \ x^2 + 5\cdot x + 7\\ (x + 1) \sqrt{x^3 + 7\cdot x^2 +12\cdot x + 6} \\\ {} \ {} \ {} \ \ {} \ {} \ {} \ {} \ {} \ {} \ {} \ \ x^3 + 2 \cdot x^2 \\\ \ \ \ {} \ \ {} \ {} \ {} \ \ {} \ {} \ \ \ {} \ {} \ {} \ \ {} \ {} \ {} \ \ 5 \cdot x^2 + 12\cdot x + 6\\ \ {} \ {} \ {} \ {} \ {} \ {} \ \ {} \ {} 5 \cdot x^2 + 5\cdot x\\\ 7\cdot x+6\\7\cdot x+7\\-1[/tex]
(x³ + 7·x² + 12·x + 6) ÷ (x + 1) = x² + 5·x + 7 Remainder -1
Expressing the result in the form [tex]q(x) + \dfrac{r(x)}{b(x)}[/tex], we have;
[tex](x^3 + 7\cdot x^2 + 12 \cdot x + 6)\div (x + 1) = x^2 + 5 \cdot x + 7 - \dfrac{1}{(x + 1)}[/tex]