Respuesta :

Answer:

[tex]a_{11} =-1\\a_{12} =3\\a_{21} =5\\a_{22} =3/2\\[/tex]

Step-by-step explanation:

[tex]2X-\left[\begin{array}{ccc}-4&8\\2&-2\end{array}\right] =\left[\begin{array}{ccc}2&-2\\8&5\end{array}\right]\\X=\frac{1}{2} (\left[\begin{array}{ccc}-4&8\\2&-2\end{array}\right] +\left[\begin{array}{ccc}2&-2\\8&5\end{array}\right])\\X=\frac{1}{2} (\left[\begin{array}{ccc}-4+2&8-2\\2+8&-2+5\end{array}\right] )\\X=\frac{1}{2} (\left[\begin{array}{ccc}-2&6\\10&3\end{array}\right] )\\X= (\left[\begin{array}{ccc}\frac{1}{2}(-2)&\frac{1}{2}(6)\\\frac{1}{2}(10)&\frac{1}{2}(3)\end{array}\right] )\\[/tex]

[tex]X= (\left[\begin{array}{ccc}-1&3\\5&3/2\end{array}\right] )[/tex]

[tex]a_{11} =-1\\a_{12} =3\\a_{21} =5\\a_{22} =3/2\\[/tex]