Respuesta :

Given:

Mean = 45

Standard deviation = 9

Confidence level = 95%.

To find:

The confidence interval.

Solution:

The formula for confidence interval is:

[tex]C.I.=\overline{x}\pm z\dfrac{\sigma}{\sqrt{n}}[/tex]

Where, [tex]\overline{x}[/tex] is mean, z is the z-value at given level of confidence, [tex]\sigma[/tex] is the standard deviation and n is the number of observations.

The z-value at 95% confidence level is 1.96.

Here number of observations are not given. Assume it is 1.

Putting [tex]\overline{x}=45,\sigma=9,z=1.96,n=1[/tex].

[tex]C.I.=45\pm 1.96\dfrac{9}{\sqrt{1}}[/tex]

[tex]C.I.=45\pm 1.96(9)[/tex]

[tex]C.I.=45\pm 17.64[/tex]

It can be written as

[tex]C.I.=[45-17.64,45+17.64][/tex]

[tex]C.I.=[27.36,62.64][/tex]

Approximate the value to the nearest whole number.

[tex]C.I.=[27,63][/tex]

The interval for the middle 95% of snowfall is  27 to 63.

Therefore, the correct option is A.