Respuesta :

Given:

The product of two consecutive numbers is 72.

To find:

The two numbers by using the quadratic equation.

Solution:

Let the two consecutive numbers are x and (x+1).

The product of two consecutive numbers is 72.

[tex]x(x+1)=72[/tex]

[tex]x^2+x-72=0[/tex]

Splitting the middle term, we get

[tex]x^2+9x-8x-72=0[/tex]

[tex]x(x+9)-8(x+9)=0[/tex]

[tex](x+9)(x-8)=0[/tex]

Using zero product property, we get

[tex]x+9=0[/tex] and [tex]x-8=0[/tex]

[tex]x=-9[/tex] and [tex]x=8[/tex]

If [tex]x=-9[/tex], then

[tex]x+1=-9+1[/tex]

[tex]x+1=-8[/tex]

If [tex]x=8[/tex], then

[tex]x+1=8+1[/tex]

[tex]x+1=9[/tex]

Therefore, the two consecutive numbers are either 8,9 or -9,-8.