Respuesta :

Given:

The radical expression is

[tex]\dfrac{1+\sqrt{5}}{\sqrt{2}}[/tex]

To find:

The value of the given expression after rationalizing the denominator.

Solution:

We have,

[tex]\dfrac{1+\sqrt{5}}{\sqrt{2}}[/tex]

Multiply numerator and denominator by [tex]\sqrt{2}[/tex].

[tex]=\dfrac{(1+\sqrt{5})\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}[/tex]

[tex]=\dfrac{\sqrt{2}+\sqrt{5}\sqrt{2}}{2}[/tex]

[tex]=\dfrac{\sqrt{2}+\sqrt{10}}{2}[/tex]         [tex][\because \sqrt{ab}=\sqrt{a}\sqrt{b}][/tex]

Therefore, the required expression after rationalizing the denominator is [tex]\dfrac{\sqrt{2}+\sqrt{10}}{2}[/tex].