Respuesta :
Answer:
Part A
The data provides convincing evidence that the T3 drug is effective in producing a reduction in mean T3 level
Part B
The 99% confidence interval for the difference in the placebo and the new drug is (-15.92, 0.7195)
Explanation:
Part A
The table of data values for the study is presented here as follows;
[tex]\begin{array}{ccc}Group \, A \ (Placebo)& Group \, B \ T3 \ drug \ reduction \ (ng/dL)\\2&30\\19&19\\8&18\\4&17\\12&20\\ 8&-4\\17&23\\7&10\\24&9\\1&22\\3&17\\7&21\\11&13\\15&31\\9&15\\\end{array}[/tex]
The mean for Group A, [tex]\overline x_1[/tex] = 9.8
The standard deviation for Group A, s₁ ≈ 6.614
The number of members of Group A, n₁ = 15
The mean for Group B, [tex]\overline x_2[/tex] = 17.4
The standard deviation for Group B, s₂ ≈ 8.56738
The number of members of Group A, n₂ = 15
The confidence level, α = 0.01 level
The null hypothesis, H₀: [tex]\overline x_1[/tex] ≤ [tex]\overline x_2[/tex]
The alternative hypothesis, Hₐ: [tex]\overline x_1[/tex] > [tex]\overline x_2[/tex]
The t-test formula as follows;
[tex]t=\dfrac{\overline x_{1}-\overline x_{2}}{\sqrt{\dfrac{s_{1}^{2} }{n_{1}}-\dfrac{s _{2}^{2}}{n_{2}}}}[/tex]
Plugging in the values of the variables, we get;
[tex]t=\dfrac{ 17.4 - 9.8}{\sqrt{\dfrac{8.56738^{2}}{15} - \dfrac{6.614^{2} }{15}}} \approx 5.405[/tex]
The critical 't' value at 0.01 convincing level and df = 15 - 1 = 14 is 2.624
Therefore, given that the t value is larger than the critical 't', we reject the null hypothesis and we fail to reject the alternative hypothesis, and there is convincing evidence that at a confidence level of a = 0.01, the T3 drug is effective in producing a reduction in mean T3 level
Part B
The 99% confidence interval is given by the following formula;
[tex]\left (\bar{x}_{1}- \bar{x}_{2} \right )\pm t_{\alpha /2}\sqrt{\dfrac{s_{1}^{2}}{n_{1}}+\dfrac{s_{2}^{2}}{n_{2}}}[/tex]
[tex]t_{\alpha /2}[/tex] = 2.977
Plugging in the values, we get;
[tex]C.I. = \left (9.8- 17.4\right )\pm 2.977 \times \sqrt{\dfrac{6.614^{2}}{15}+\dfrac{8.56738 ^{2}}{15}}[/tex]
The 99% confidence interval for the difference in the placebo and the new drug is C.I. = -15.92 < [tex]\overline x_1[/tex] - [tex]\overline x_2[/tex] < 0.7195