Part A: Factor the expression 18x^2– 39x + 18 completely. Show your work for full credit (6 poionts)
Part B: How do you use multiplication of polynomials to verify the solution is correct? (4 points)

Respuesta :

Answer:

[tex](a)\[/tex]  [tex]18x^2 - 39x + 18 = 3(3x -2)(2x - 3)[/tex]

(b) See Explanation

Step-by-step explanation:

Given

[tex]18x^2 - 39x + 18[/tex]

Solving (a): Factorize Completely

[tex]18x^2 - 39x + 18[/tex]

Factor out the common term

[tex]18x^2 - 39x + 18 = 3(6x^2 - 13x + 6)[/tex]

Expand

[tex]18x^2 - 39x + 18 = 3(6x^2 - 9x -4x + 6)[/tex]

Factorize

[tex]18x^2 - 39x + 18 = 3(3x(2x - 3) -2(2x - 3))[/tex]

Factor out 2x - 3

[tex]18x^2 - 39x + 18 = 3(3x -2)(2x - 3)[/tex]

Solving (b): Verify the result

To do this, we simply multiply the terms of the polynomial

[tex]3(3x -2)(2x - 3)[/tex]

[tex]3(3x -2)(2x - 3) = (9x - 6)(2x - 3)[/tex]

Open brackets

[tex]3(3x -2)(2x - 3) = 18x^2 - 27x - 12x + 18[/tex]

[tex]3(3x -2)(2x - 3) = 18x^2 - 39x + 18[/tex]