Answer:
2
Step-by-step explanation:
The average rate of change of h(x) in the closed interval [ a, b ] is
[tex]\frac{f(b) - f(a)}{b-a}[/tex]
Here [ a, b ] = [ - 2, 4 ] , then
f(b) = f(4) = - (4)² + 4(4) + 12 = - 16 + 16 + 12 = 12
f(a) = f(- 2) = - (- 2)² + 4(- 2) + 12 = - 4 - 8 + 12 = 0
Then
average rate of change = [tex]\frac{12-0}{4-(-2)}[/tex] = [tex]\frac{12}{6}[/tex] = 2