Find the exact value of the length of the hypotenuse.

Answer:
10.39230485
Step-by-step explanation:
Hey There!
To solve for the hypotenuse we are going to use the 30-60-90 triangle rule
we are given x [tex]3\sqrt{3}[/tex]
to find the hypotenuse we multiply x by 2
[tex]2(3\sqrt{3)} =6\sqrt{3}[/tex]
the exact value of [tex]6\sqrt{3}[/tex] is 10.39230485
so 10.39230485 is your answer
Answer:
[tex]\boxed{\text{ \Large 6\sqrt{3} $ }}[/tex]
Step-by-step explanation:
Use sine rule
[tex]\large \text{$ \sf sin(\theta)=\frac{opposite \ side}{hypotenuse \ side} $}[/tex]
[tex]\large \text{$ \sf sin(30)=\frac{3\sqrt{3}}{hyp} $}[/tex]
Solve for hypotenuse
[tex]\large \text{$ \sf hyp=\frac{3\sqrt{3}}{sin(30) } = \frac{3\sqrt{3} }{0.5}=6\sqrt{3} $}[/tex]