Respuesta :

Answer:

The measure of the sum of interior angles of a 11-gon is [tex]1620^{o}[/tex].

Each interior angle is approximately [tex]147.273^{o}[/tex].

Step-by-step explanation:

A convex polygon has the measure of each interior angles to be less than [tex]180^{o}[/tex].

But,

sum of interior angles of polygon = (n - 2) x [tex]180^{o}[/tex]

where n is the number of sides of the polygon.

For a convex 11-gon, we have;

sum of angles of a 11-gon = (11 - 2) x [tex]180^{o}[/tex]

                                         = 9 x [tex]180^{o}[/tex]

                                         = [tex]1620^{o}[/tex]

Sum of angles of a 11-gon = [tex]1620^{o}[/tex]

To check: convex polygons' interior angles are less than [tex]180^{o}[/tex].

so that,

each interior angle of 11-gon = [tex]\frac{1620}{11}[/tex]

                                        = [tex]147.273^{o}[/tex]