Respuesta :

Answer:-

[tex]\pink{\bigstar}[/tex] Simplified form [tex]\large\leadsto\boxed{\tt\purple{\dfrac{2 \pi}{3}}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • [tex]\sf \dfrac{4 \pi \sqrt{5} - 2 \pi \sqrt{5}}{3 \sqrt{5}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Simplified form

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf \dfrac{4 \pi \sqrt{5} - 2 \pi \sqrt{5}}{3 \sqrt{5}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf \dfrac{2 \pi \sqrt{5}}{3 \sqrt{5}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf \dfrac{\sqrt{5} (2 \pi)}{\sqrt{5} (3)}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➪ [tex]\sf \dfrac{\cancel{\sqrt{5}}(2 \pi)}{\cancel{\sqrt{5}} (3)}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]\bold\red{\dfrac{2 \pi}{3}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, Option A is the correct choice.

option A.

Step-by-step explanation:

we have

[tex] \frac{4\pi \sqrt{5} - 2\pi \sqrt{5} }{3 \sqrt{5} } [/tex]

taking out 2[tex] \pi\sqrt{5}[/tex] common from the numerator

[tex] \frac{2\pi \sqrt{5}(2 - 1) }{3 \sqrt{5} } [/tex]

canceling [tex] \sqrt{5} [/tex] from both numerator and denominator

[tex] \frac{2\pi(1)}{3} [/tex]

hence the answer is option A.