Respuesta :

Answer:

[tex]\frac{\sqrt{24}- \sqrt{54} }{\sqrt{6}}[/tex] = -1  

[tex]\sqrt{\frac{9}{20}[/tex]*[tex]\frac{10\sqrt{2} }{3\sqrt{5} }[/tex] = 1.4142

[tex]\frac{10\pi\sqrt{2}-8\pi\sqrt{2}}{2\sqrt{2}}[/tex]  = π =3.14159

[tex]\pi\sqrt{\frac{5}{3}}\cdot\pi\sqrt{\frac{3}{5}}[/tex] = π² = 9.8696

Explanation:

1.) Rewrite √24 = [tex]\sqrt{4*6} = 2\sqrt{6}[/tex]   Rewrite √54 =[tex]\sqrt{9*6}= 3\sqrt{6}[/tex]

Divide both terms by the denominator; √6 cancels. 2-3 = -1

2.) Rewrite as [tex]\frac{3}{2\sqrt{5}}[/tex] ×[tex]\frac{10\sqrt{2}}{3\sqrt{5}}[/tex]  The 3's cancel.  10/2 = 5√2 in the numerator.

√5 × √5 = 5 in the denominator.  The 5's cancel.

That leaves √2 ≈1.4142

3.) Divide the terms in the numerator by the term in the denominator.

√2's cancel.  10π/2 = 5π   8π/2 = 4π  

Subtract and we are left with π = 3.14159

4.) [tex]\pi\sqrt{\frac{5}{3}}\cdot\pi\sqrt{\frac{3}{5}}[/tex]  The square roots are reciprocals. They multiply to 1

We are left with π × π = π² ≈  9.8696

Answer:

It goes...The second one, fourth one, First one, then the third one

Step-by-step explanation:

I took the test a while ago