Answer:
m<S = [tex]35.3^{o}[/tex]
Step-by-step explanation:
Applying the sine rule to the given question, we have;
[tex]\frac{r}{Sin R}[/tex] = [tex]\frac{s}{Sin S}[/tex]
[tex]\frac{24}{Sin 120}[/tex] = [tex]\frac{16}{Sin S}[/tex]
cross multiply to have,
16 x Sin 120 = 24 x Sin S
16 x 0.8660 = 24 Sin S
13.856 = 24 Sin S
Sin S = [tex]\frac{13.856}{24}[/tex]
= 0.57733
S = [tex]Sin^{-1}[/tex] 0.57733
= 35.2630
Thus, m<S = [tex]35.3^{o}[/tex]