HELP ME!! I'LL GIVE BRAINLIEST!!

The range of a launched rocket is modeled by the function r(θ)=1/16 v^2 sinθ cosθ.


Question 1

Use a double angle identity to rewrite the formula.

HELP ME ILL GIVE BRAINLIESTThe range of a launched rocket is modeled by the function rθ116 v2 sinθ cosθQuestion 1Use a double angle identity to rewrite the form class=

Respuesta :

Answer:

[tex] r(θ)= \frac{1}{32} {v}^{2} sin2θ[/tex]

Step-by-step explanation:

[tex]r(θ)= \frac{1}{16 }v^2 sinθ cosθ. \\ \\ r(θ)= \frac{1}{16 } v^2 \times \frac{2sinθ cosθ}{2} . \\ \\ r(θ)= \frac{1}{16} {v}^{2} \times \frac{1}{2} \times sin2θ \\ \\ r(θ)= \frac{1}{16} \times \frac{1}{2} {v}^{2} sin2θ \\ \\ r(θ)= \frac{1}{32} {v}^{2} sin2θ[/tex]

The given modeled function for a launched rocket is transformed to  [tex]r(\theta)=1/32 v^2 sin2\theta[/tex]

The range of a launched rocket is modeled by the function r(θ)=1/16 v^2 sinθ cosθ. using a double angle to determine identity to rewrite the formula.

What are functions?

Functions are the relationship between sets of values. i.e. y=f(x), for every value of input x there is its existing output in a set of y. x is the independent variable while Y is the dependent variable.

Here, using identity
[tex]sin2\theta=2sin\theta cos\theta[/tex]
We have, [tex]r(\theta)=1/16 v^2 sin\theta cos\theta.[/tex]
multiply by 2 to the numerator and denominator of the right-hand side.
[tex]r(\theta)=1/(16*2) v^2 2sin\theta cos\theta.\\r(\theta)=1/(32) v^2 sin2\theta[/tex]

Thus, the given modeled function for a launched rocket is transformed to  [tex]r(\theta)=1/32 v^2 sin2\theta[/tex]

Learn more about function here:

brainly.com/question/21145944

#SPJ2