Respuesta :
Answer:
[tex]P(Z < 4.3) = 0.9999[/tex]
[tex]P(Z> -1.69) = 0.9545[/tex]
[tex]P(-1.12 < Z < 1.12) = 0.7373[/tex]
[tex]P(-1.3 < Z < 0.98) = 0.7397[/tex]
[tex]P(Z < -1.12\ or\ Z > 1.12) = 0.2628[/tex]
Step-by-step explanation:
To answer these questions, we will make use of a z score table
Solving (a): [tex]P(Z < 4.3)[/tex]
[tex]P(Z < 4.3) = 0.9999[/tex]
Solving (b): [tex]P(Z> -1.69)[/tex]
First, we rewrite this using complement rule
[tex]P(Z> -1.69) = 1 - P(Z < -1.69)[/tex]
From the z score table:
[tex]P(Z< -1.69) = 0.045514[/tex]
So, we have:
[tex]P(Z> -1.69) = 1 - 0.045514[/tex]
[tex]P(Z> -1.69) = 0.9545[/tex]
Solving (c) [tex]P(-1.12 < Z < 1.12)[/tex]
This is equivalent to:
[tex]P(-1.12 < Z < 1.12) = P(Z<1.12) - P(Z<-1.12)[/tex]
Use the z score table
[tex]P(-1.12 < Z < 1.12) = 0.86864 - 0.13136[/tex]
[tex]P(-1.12 < Z < 1.12) = 0.7373[/tex]
Solving (d) [tex]P(-1.3 < Z < 0.98)[/tex]
This is equivalent to
[tex]P(-1.3 < Z < 0.98) = P(Z<0.98)- P(Z<-1.3)[/tex]
[tex]P(-1.3 < Z < 0.98) = 0.83646- 0.0968[/tex]
[tex]P(-1.3 < Z < 0.98) = 0.7397[/tex]
Solving (e) [tex]P(Z < -1.12 or Z > 1.12)[/tex]
This is interpreted as:
[tex]P(Z < -1.12\ or\ Z > 1.12) = P(Z < -1.12) + P(Z > 1.12)[/tex]
Apply complement rule
[tex]P(Z < -1.12\ or\ Z > 1.12) = P(Z < -1.12) + 1 - P(Z < 1.12)[/tex]
[tex]P(Z < -1.12\ or\ Z > 1.12) = 0.1314 + 1 - 0.8686[/tex]
[tex]P(Z < -1.12\ or\ Z > 1.12) = 0.2628[/tex]