contestada

Two spherical shells have a common center. A -2.1 10-6 C charge is spread uniformly over the inner shell, which has a radius of 0.050 m. A +5.0 10-6 C charge is spread uniformly over the outer shell, which has a radius of 0.15 m. Find the magnitude and direction of the electric field at the following distances (measured from the common center). (a) 0.20 m magnitude direction (b) 0.10 m magnitude direction (c) 0.025 m magnitude direction

Respuesta :

Answer:

a) E_total = 6,525 10⁴ N /C ,field direction is radial outgoing

b)  E_total = 1.89 10⁶ N / C, field is incoming radial

c) E_total = 0

Explanetion:

For this exercise we can use that the charge in a spherical shell can be considered concentrated at its center and that the electric field inside the shell is zero, since Gauss's law is

                Ф = E .dA = q_{int} /ε₀

inside the spherical shell there are no charges

The electric field is a vector quantity, so we calculate the field created by each shell and add it vectorly.

We have two sphere shells with radii 0.050m and 0.15m respectively

a) point where you want to know the electric field d = 0.20 m

shell 1

the point is on the outside,d>ro,  therefore we can consider the charge to be concentrated in the center

            E₁ = k q₁ / d²

             

shell 2

the point is on the outside,d>ro

             E₂ = k q₂ / d²

the total camp is

              E_total = -E₁ + E₂

              E_total = k ( [tex]\frac{-q_1 + q_2}{d^2}[/tex])

              E_total = 9 10⁹ (-2.1 10⁻⁶+ 5 10⁻⁶ / .2²

              E_total = 6,525 10⁵ N /C

The field direction is radial and outgoing ti the shells

b) the calculation point is d = 0.10m

shell 1

point outside the shell d> ro

                 E₁ = k q₁ / d²

shell 2

the point is inside the shell d <ro

Therefore, according to Gauss's law, since there are no charges in the interior, the electrioc field is zero

                E₂ = 0

               

                 E_total = E₁

                 E_total = k q₁ / d²

                 E_total = 9 10⁹ 2.1 10⁻⁶ / 0.1²

                 E_total = 1.89 10⁶ N / A

As the charge is negative, this field is incoming radial, that is, it is directed towards the shell 1

c) the point of interest d = 0.025 m

shell 1

point  is inside the shell d< ro

                 

as there are no charges inside

                     E₁ = 0

shell 2

point is inside the radius of the shell d <ro

                    E₂ = 0

the total field is

                    E_total = 0