g Drop the object again and carefully observe its motion after it hits the ground (it should bounce). (Consider only the first bounce and do NOT assume the total energy is the same as the total energy of the object before it hits the ground.) a. List the quantities that you need to know to determine the total energy of the object after it hits the ground. b. Record your measurements and describe how you measured them. c. Calculate the total energy of the object after it hit the ground. Your final answer: ______________ d. Determine whether or not the object’s energy was conserved when it hit the ground. If it was not conserved, explain where the energy went.

Respuesta :

Answer:

a) quantity to be measured is the height to which the body rises

b) weighing the body , rule or fixed tape measure

c)   Em₁ = m g h

d) deformation of the body or it is transformed into heat during the crash

Explanation:

In this exercise of falling and rebounding a body, we must know the speed of the body when it reaches the ground, which can be calculated using the conservation of energy, since the height where it was released is known.

a) What quantities must you know to calculate the energy after the bounce?

The quantity to be measured is the height to which the body rises, we assume negligible air resistance.

So let's use the conservation of energy

starting point. Soil

          Em₀ = K = ½ m v²

final point. Higher

          Em_f = U = mg h

         Em₀ = Em_f

         Em₀ = m g h₀

b) to have the measurements, we begin by weighing the body and calculating its mass, the height was measured with a rule or fixed tape measure and seeing how far the body rises.

c) We use conservation of energy

starting point. Soil

          Em₁ = K = ½ m v²

final point. Higher

          Em_f = U = mg h

         Em₁ = Em_f

         Em₁ = m g h

d) to determine if the energy is conserved, the arrival energy and the output energy must be compared.

There are two possibilities.

* that have been equal therefore energy is conserved

* that have been different (most likely) therefore the energy of the rebound is less than the initial energy, it cannot be stored in the possible deformation of the body or it is transformed into heat during the crash