Answer:
Step-by-step explanation:
[tex]\text{To find :} \\ \\ 1.) \ \ \text{More than 20} \\ \\ 2) \text{Less than 30 } \\ \\ 3) \ \text{Within the range of }( \mu - \sigma , \mu +\sigma)[/tex]
[tex]\ \ \ Since \ \ X \ \text{follows a poisson distribution and;} \\ \\ X\sim Poisson (0.57) per \ gram \\ \\ X \sim Poisson (28.5) \ per \ 50 \ grams \\ \\[/tex]
[tex]1) \ \ \ \text{The probability } P(X>20) = \sum \limits ^{50}_{x=21} \dfrac{e^{-28.5}\times 28.5^x}{x!} \\ \\ \mathbf{ = 0.9389}[/tex]
[tex]2) P( X<30) = \sum \limits ^{29}_{x=0} \dfrac{e^{-28.5}\times 28.5^x}{x!} \\ \\ \mathbf{=0.5861}[/tex]
[tex]\text{3) Since then mean}\ \mu = 28.5 \\ \\ \sigma =\sqrt{28.5} = 5.339 \\ \\ \mu - \sigma = 28.5 -5.339= 23.161 \\ \\ \mu + \sigma = 28.5 + 5.339 = 33.839[/tex]
∴
[tex]P(23.161 < X< 33.839) = \sum \limits ^{33}_{24} \dfrac{e^{-28.5}\times 28.5^x}{x! } \\ \\ = P(X\le 33) - P( X \le 23) \\ \\ = 0.82678 - 0.1750 \\ \\ \mathbf{= 0.6516}[/tex]