Respuesta :

your awnser will be 1 3/4

Answer:

[tex]\frac{9}{4} - \frac{5}{10} = 1\frac{3}{4}[/tex]

Step-by-step explanation:

Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.

LCD(9/4, 5/10) = 20

[tex](\frac{9}{4} * \frac{5}{5} ) - (\frac{5}{10} * \frac{2}{2} ) = ?[/tex]

Complete the multiplication and the equation becomes

[tex]\frac{45}{20} - \frac{10}{20}[/tex]

The two fractions now have like denominators so you can subtract the numerators.

Then:

[tex]\frac{45 - 10}{20} = \frac{35}{20}[/tex]

This fraction can be reduced by dividing both the numerator and denominator by the Greatest Common Factor of 35 and 20 using

GCF(35,20) = 5

[tex]\frac{35 / 5 }{20 / 5} = \frac{7}{4}[/tex]

The fraction

[tex]\frac{7}{4}[/tex]

is the same as

7 ÷ 4

Therefore:

[tex]\frac{9}{4} - \frac{5}{10} = 1\frac{3}{4}[/tex]

Apply the fractions formula for subtraction, to

[tex]\frac{9}{4} - \frac{5}{10}[/tex]

and solve

[tex]\frac{(9 * 10)- (5* 4) }{4 * 10}[/tex]

[tex]= \frac{90-20}{40}[/tex]

[tex]= \frac{70}{40}[/tex]

Reduce by dividing both the numerator and denominator by the Greatest Common Factor GCF(70,40) = 10

[tex]\frac{70/ 10 }{40 / 10} = \frac{7}{4}[/tex]

Convert to a mixed number using

long division for 7 ÷ 4 = 1R3, so

[tex]\frac{7}{4} = 1\frac{3}{4}[/tex]

Therefore:

[tex]\frac{9}{4} - \frac{5}{10} = 1\frac{3}{4}[/tex]