Respuesta :

Answer:

[tex]\boxed {\boxed {\sf \frac {1}{3} \ mol \ Al_2O_3 \approx 0.34 \ mol \ Al_2O_3}}[/tex]

Explanation:

We will use stoichiometry to solve this problem. The reaction given has a formula of

[tex]4Al+3O_2 \rightarrow 2Al_2O_3[/tex]

The coefficients tell us the number of moles necessary for the reaction.

The reaction requires 3 moles of oxygen to produce 2 moles of aluminum oxide. We can make a ratio.

[tex]\frac {3 \ mol \ O_2}{ 2\ mol \ Al_2O_3}}[/tex]

Since we are doing the reaction with 0.5 moles of oxygen, we multiply the ratio by that number.

[tex]0.5 \ mol \ O_2 *\frac {3 \ mol \ O_2}{ 2 \ mol \ Al_2O_3}}[/tex]

Flip the ratio so the moles of oxygen cancel each other out.

[tex]0.5 \ mol \ O_2 *\frac {2 \ mol \ Al_2O_3}{ 3 \ mol \ O_2}}[/tex]

[tex]0.5 *\frac {2 \ mol \ Al_2O_3}{ 3 }[/tex]

[tex]\frac {1 \ mol \ Al_2O_3}{ 3 }[/tex]

[tex]\frac {1}{3} \ mol \ Al_2O_3 = 0.33333 \ mol \ Al_2O_3 \approx 0.34 \ mol \ Al_2O_3[/tex]

0.5 moles of oxygen produces 1/3 or approximately 0.34 moles of aluminum oxide.