Given:
[tex]P(A)=0.44,P(B)=0.6,P(A\cap B)=0.394[/tex].
To find:
The value of [tex]P(A\cup B)[/tex], rounding to the nearest thousandth.
Solution:
We know that,
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
On substituting [tex]P(A)=0.44,P(B)=0.6,P(A\cap B)=0.394[/tex], we get
[tex]P(A\cup B)=0.44+0.6-0.394[/tex]
[tex]P(A\cup B)=0.646[/tex]
Therefore, the value of [tex]P(A\cup B)[/tex] is 0.646.