Respuesta :

Given:

The figure of two quadrilaterals.

In [tex]ABCD,AB=18,BC=20,CD=22,AD=24[/tex]

In [tex]EFGH,EF=27,FG=30,GH=34, EH=36[/tex]

To find:

Whether the figures are congruent, similar or neither.

Solution:

Ratio of corresponding sides are:

[tex]\dfrac{AB}{EF}=\dfrac{18}{27}[/tex]

[tex]\dfrac{AB}{EF}=\dfrac{2}{3}[/tex]

Similarly,

[tex]\dfrac{BC}{FG}=\dfrac{20}{30}[/tex]

[tex]\dfrac{BC}{FG}=\dfrac{2}{3}[/tex]

[tex]\dfrac{CD}{GH}=\dfrac{22}{34}[/tex]

[tex]\dfrac{CD}{GH}=\dfrac{11}{17}[/tex]

And,

[tex]\dfrac{AD}{EH}=\dfrac{24}{36}[/tex]

[tex]\dfrac{AD}{EH}=\dfrac{2}{3}[/tex]

Clearly, [tex]\dfrac{AB}{EF}=\dfrac{BC}{FG}=\dfrac{AD}{EH}\neq \dfrac{CD}{GH}[/tex].

All corresponding sides are not proportional.

Therefore, the figures are neither similar nor congruent. Hence, third option is correct.