Respuesta :

Answer:

[tex]50.04[/tex]

Step-by-step explanation:

Use this formula for arc length

[tex]2\pi \times r( \frac{x}{360} )[/tex]

where r is the radius and x is the arc measure.

We know Arc de is 8.73 so we are finding x.

R equal 10.

[tex]2\pi \times 10( \frac{x}{360} ) = 8.73[/tex]

[tex]20\pi( \frac{x}{360} ) = 8.73[/tex]

[tex]20\pi \times x = 3142.8[/tex]

[tex]x = \frac{3142.8}{20\pi} [/tex]

x=50.04

The value of the angle will be 50.04.

What will be the angle?

It is given in the question that

The arc of the circle A=8.73 In

The radius of the circle =10 In

Now from the formula of arc

[tex]A=2\pi r(\dfrac{\theta}{360} )[/tex]

[tex]8.73=2\pi 10\times \dfrac{\theta }{360}[/tex]

[tex]\theta = \dfrac{8.73\times 360 }{ 2\pi\times 10} =50.04[/tex]

[tex]\theta=50.04[/tex]

Thus the value of the angle will  be 50.04

To know more about the arc of the circle follow

https://brainly.com/question/25305793