find the slope between the given two points

Slope can be found using the following equation:
slope (m) = [tex]\frac{y_2 - y_1}{x_2 - x_1}[/tex]
7) Let:
[tex](x_1 , y_1) = (-1 , -11)\\(x_2 , y_2) = (-6 , -7)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{-7 - (-11)}{-6 - (-1)} = \frac{-7 + 11}{-6 + 1} = \frac{4}{-5} = -\frac{4}{5}[/tex]
Slope: [tex]-\frac{4}{5}[/tex]
8) Let:
[tex](x_1 , y_1) = (-7 , -13)\\(x_2 , y_2) = (1 , -5)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{-5 - (-13)}{1 - (-7)} = \frac{-5 + 13}{1 + 7} = \frac{8}{8} = 1[/tex]
Slope: [tex]1[/tex]
9) Let:
[tex](x_1 , y_1) = (-5 , 3)\\(x_2 , y_2) = (8 , 3)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{3 - (3)}{8 - (-5)} = \frac{0}{8 + 5} = \frac{0}{13} = 0[/tex]
Slope: [tex]0[/tex]
10) Let:
[tex](x_1 , y_1) = (3 , -2)\\(x_2 , y_2) = (15 , 7)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{7 - (-2)}{15 - 3} = \frac{7 + 2}{15 - 3} = \frac{9}{12}[/tex]
Simplify the slope. Divide common factors from both the numerator and denominator:
[tex](\frac{9}{12})/(\frac{3}{3} ) = \frac{3}{4}[/tex]
Slope: [tex]\frac{3}{4}[/tex]
11) Let:
[tex](x_1 , y_1) = (-5 , -10)\\(x_2 , y_2) = (-5 , -1)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{-1 - (-10)}{-5 - (-5)} = \frac{-1 + 10}{-5 + 5} = \frac{9}{0} =[/tex] undefined.
Slope: undefined
12) Let:
[tex](x_1 , y_1) = (-4 , -2)\\(x_2 , y_2) = (-12, 16)[/tex]
Plug in the corresponding numbers to the corresponding variables:
m = [tex]\frac{16 - (-2)}{-12 - (-4)} = \frac{16 + 2}{-12 + 4} = \frac{18}{-8} = -\frac{18}{8} = ((-\frac{18}{8})/( \frac{2}{2}) = -\frac{9}{4}[/tex]
Slope: [tex]-\frac{9}{4}[/tex]
~