Respuesta :

Given:

[tex]f(x)=x^3+4x^2+5x+2,k=-2[/tex]

To find:

The the given function in the form [tex]f(x)=(x-k)q(x)+r[/tex].

Solution:

We have,

[tex]f(x)=x^3+4x^2+5x+2[/tex]

The coefficients of f(x) are 1, 4, 5, 2.

Divide the given function by (x+2) by using synthetic division as shown below:

-2 | 1        4           5         2

              -2         -4        -2

_____________________

      1        2          1           0

_____________________

Bottom row represent the quotient and last element of the bottom row is the remainder.

Degree of the function is 3 and the degree of division is 1. So, the degree of the quotient is 3-1 = 2.

So, the quotient is [tex]x^2+2x+1[/tex] and the remainder is 0.

Now,

[tex]f(x)=(x-k)q(x)+r[/tex]

Here, q(x) is the quotient and r is the remainder.

[tex]f(x)=(x-k)(x^2+2x+1)+0[/tex]

Therefore, the required answer is [tex]f(x)=(x-k)(x^2+2x+1)+0[/tex].