Answer: The rate increases 3 times on raising the temperature from 20degree to 30 degree
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
[tex]ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}][/tex]
where [tex]k_2[/tex] = rate constant at temp [tex]T_2[/tex]
[tex]k_1[/tex] = rate constant at temp [tex]T_1[/tex]
[tex]E_a[/tex]= activation energy
R= gas constant
[tex]T_1[/tex]= temperature = [tex]20^0C=(20+273)K=293K[/tex]
[tex]T_2[/tex]= temperature = [tex]30^0C=(30+273)K=303K[/tex]
[tex]ln \frac{k_{2}}{k_{1}} = \frac{-85\times 1000J/mol}{8.314J/Kmol}[\frac{1}{303} - \frac{1}{293}][/tex]
[tex]ln \frac{k_{2}}{k_{1}}=1.15[/tex]
[tex]\frac{k_{2}}{k_{1}}=3[/tex]
Thus rate increases 3 times on raising the temperature from 20degree to 30 degree