Make a scatter plot of the data below.
Speed (mph)
Stopping distance (ft)
10
12.5
20
36.0
30
69.5
40
114.0
50
169.5
60
249.0
70
325.5

Use the quadratic regression feature of a graphing calculator to find a quadratic model. Round to the nearest hundredths place.
a.
y = 0.06 x squared + 0.31 x + 4
b.
y = negative 4.03 x squared + 0.32 x + 8.19
c.
y = 0.06 x squared minus 0.31 x minus 4
d.
y = 4.03 x squared minus 0.32 x minus 8.19

Respuesta :

Answer:

c

Step-by-step explanation:

By using the quadratic regression feature of a graphing calculator a quadratic model would be [tex]y = 0.06 x^2 + 0.31 x + 4[/tex]

What is a quadratic equation?

A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is  ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.

Speed (mph)           Stopping distance (ft)

10                                12.5

20                               36.0

30                               69.5

40                               114.0

50                               169.5

60                               249.0

70                               325.5

Use the quadratic regression feature of a graphing calculator to find a quadratic model.

From the above data, we get

[tex]y = 0.06 x^2 + 0.31 x + 4[/tex]

Learn more about quadratic equations;

brainly.com/question/13197897

#SPJ2