Answer:
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
Explanation:
From the information given:
The avg. velocity post the window is;
[tex]v_{avg} = \dfrac{L_w}{t}[/tex]
[tex]v_b[/tex] = velocity located at the top of the window
[tex]v_b[/tex] = velocity situated at the bottom of the window
Using the equation of kinematics:
[tex]v_b = v_t + gt[/tex]
Hence,
[tex]v_t = v_b - gt[/tex]
To determine the average velocity as follows:
[tex]v_{avg} = \dfrac{1}{2} (v_t + v_b)\dfrac{L_w}{t}= \dfrac{1}{2}(v_b - gt +v_b) \\ \\\dfrac{L_w}{t} = v_b - \dfrac{1}{2}gt \\ \\ v_b = \dfrac{L_w}{t }+ \dfrac{1}{2} gt\\ \\ = \dfrac{1}{t} \Bigg(L_w + \dfrac{1}{2}gt^2 \Bigg) \\ \\[/tex]
where;
[tex]v_b[/tex] = velocity gained when fallen through the height h.
Similarly, using the equation of kinematics, we have;
[tex]v_b^2 = 2gh \\ \\h = \dfrac{v_b^2}{2g}[/tex]
[tex]\implies \dfrac{(L_w + \dfrac{1}{2} gt^2_^2}{2gt^2}[/tex]
Thus, the velocity at the ground is;
[tex]v^2_{grround} = v_b^2 + 2ghb[/tex]
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]