A capacitor has plates separated by
8.89 x 10-7 m. To create a
capacitance of 1.11 x 10-9 F, what
must the area of the plates be?

A capacitor has plates separated by 889 x 107 m To create a capacitance of 111 x 109 F what must the area of the plates be class=

Respuesta :

We know, formula of capacitance in parallel plate capacitor is given by :

[tex]C = \dfrac{\epsilon_o A}{d}[/tex]

Here, [tex]\epsilon_o = 8.85 \times 10^{-12} \ F.m^{-1}[/tex]

So,

[tex]A = \dfrac{Cd}{\epsilon_o}\\\\A = \dfrac{1.11 \times 10^{-9}\times 8.89 \times 10^{-7}}{8.85\times 10^{-12}}\\\\A = 1.11 \times 10^{-4}\ m^2 \ or \ 1.11 \ cm^2[/tex]

Hence, this is the required solution.

Answer:

7.09797297 • 10^-7

Explanation:

You just follow the formula:

C = εA/d

ε = 8.85 • 10^-12

A = 8.89 • 10^-7

D = 1.11• 10 ^-9

So:

C = (8.85 • 10^-12)(8.89• 10^-4)/1.11 • 10 ^-9 = 7.09797297 • 10^-7

Good Luck!  :)