Solve using the quadratic formula. Show all work. Write each solution in simplest form. No decimals.

Given:
The given quadratic equation is:
[tex]12a^2+9a+7=0[/tex]
To find:
The solution for the given quadratic equation in simplest form by using the quadratic formula.
Solution:
Consider a quadratic equation is defined as [tex]ax^2+bx+c=0[/tex], then the quadratic formula is:
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
The given quadratic equation is:
[tex]12a^2+9a+7=0[/tex]
We have, [tex]a=12,b=9,c=7[/tex]. Using the quadratic formula, we get
[tex]x=\dfrac{-(9)\pm \sqrt{(9)^2-4(12)(7)}}{2(12)}[/tex]
[tex]x=\dfrac{-9\pm \sqrt{81-336}}{24}[/tex]
[tex]x=\dfrac{-9\pm \sqrt{-255}}{24}[/tex]
[tex]x=\dfrac{-9\pm i\sqrt{255}}{24}[/tex] [tex][\because \sqrt{-a}=i\sqrt{a}][/tex]
The solutions of the given equations are [tex]x=\dfrac{-9-i\sqrt{255}}{24}[/tex] and [tex]x=\dfrac{-9+i\sqrt{255}}{24}[/tex].
Hence, the correct option is B.