Respuesta :

Given:

Area of a sector = [tex]15\pi[/tex]

Radius = 5 cm

To find:

The central angle.

Solution:

The area of a sector is:

[tex]A=\dfrac{1}{2}r^2\theta[/tex]

Where, r is the radius and [tex]\theta[/tex] is the central angle in radians.

Putting [tex]A=15\pi, r=5[/tex] in the above formula, we get

[tex]15\pi=\dfrac{1}{2}(5)^2\theta[/tex]

Multiply both sides by 2.

[tex]30\pi=25\theta[/tex]

Divide both sides by 25.

[tex]\dfrac{30\pi}{25}=\theta[/tex]

[tex]\dfrac{6\pi}{5}=\theta[/tex]

Therefore, the central angle in radians is [tex]\theta=\dfrac{6\pi}{5}[/tex].