Answer: [tex]0.1066\ psi, 15.611\ kN[/tex]
Explanation:
Given
the height of the tank is [tex]h=10\ cm[/tex]
The diameter of the tank is [tex]d=520\ cm[/tex]
Density of solution [tex]\rho=0.75\ g/cm^3\ or\ 750\ kg/m^3[/tex]
[tex](a)[/tex] Water pressure at the bottom of the tank is
[tex]P=\rho gh\\P=750\times 9.8\times 0.1\\P=735\ Pa[/tex]
[tex]1\ Pa=0.000145038\ psi[/tex]
[tex]\Rightarrow P=735\ Pa\ or\ 0.1066\ psi[/tex]
[tex](b) \text{Average force on the bottom is the product of pressure and area of the base}[/tex]
[tex]F_{avg}=735\times \pi \cdot (\frac{520}{200})^2\\\\F_{avg}=735\times 3.142\times 6.76\\F_{avg}=15,611.34\ N\ or\ 15.611\ kN[/tex]