In the figure below, ACDE is similar to AFGH.
D
G
11
8
C
5 E
2X+4
F
H
If the perimeter of AFGH is 48 units, find the value of x.

In the figure below ACDE is similar to AFGH D G 11 8 C 5 E 2X4 F H If the perimeter of AFGH is 48 units find the value of x class=

Respuesta :

Answer:

6

Step-by-step explanation:

[tex]1)\ P_1 = 11 + 8 + 5 = 24\ units[/tex]

[tex]2)\ 2x + 4 + y +z = 48[/tex]

[tex]3)\ \frac{48}{24} = 2 => 2x+4 = 2*8[/tex]

[tex]4)\ 2x+4 = 2*8 => 2x + 4 = 16 => 2x = 12 => x = 6[/tex]

Answer:

6

Step-by-step explanation:

[tex] \triangle CDE \sim \triangle FGH[/tex]

[tex] \frac{P(\triangle CDE) }{P(\triangle FGH)} =\frac{CD}{GH} [/tex]

(Area of similar triangle theorem)

[tex] \frac{11+8+5}{48} =\frac{8}{2x +4} [/tex]

[tex] \frac{24}{48} =\frac{8}{2x +4} [/tex]

[tex] \frac{1}{2} =\frac{8}{2x +4} [/tex]

[tex] 2x + 4 = 2\times 8[/tex]

[tex] 2x + 4 =16[/tex]

[tex] 2x =16-4[/tex]

[tex] 2x =12[/tex]

[tex] x =\frac{12}{2} [/tex]

[tex] x = 6 [/tex]