Write an expression in the form ax+b, where a and b represent rational numbers, that is equivalent to 6 (-1/2x + 2) + 1/4 (18x-12)


I need this answered by today, please!!

Respuesta :

Answer:

[tex]6x + 6[/tex]

Step-by-step explanation:

Given

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12)[/tex]

Required

Express as [tex]ax + b[/tex]

We have:

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12)[/tex]

Open brackets

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12) = 6 *-\frac{1}{2}x + 6*2 + \frac{1}{2} *18x-\frac{1}{2} *12[/tex]

Evaluate all multiplications

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12) = -3x + 12 + 9x-6[/tex]

Collect like terms

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12) = 9x-3x + 12-6[/tex]

[tex]6 (-\frac{1}{2}x + 2) + \frac{1}{2} (18x-12) = 6x +6[/tex]

Hence, the expression in form of [tex]ax + b[/tex] is [tex]6x + 6[/tex]