Respuesta :

Answer:

(X+1)²+4(y+3)² = (√-20)²

Step-by-step explanation:

The standard form of expressing equation ic;

(x-a)²+(y-b)² = r²

Given the expression

x²+4y²+2x+24y+21 = 0

Collect the like terms

x²+2x + 4y²+24y+21 = 0

Completing the squares

x²+2x +(2/2)² + 4(y²+6y)+21 = 0+(2/2)²

x²+2x +(2/2)² + 4(y²+6y+(6/2)²)+21 = 0+(2/2)²

x²+2x +1 + 4(y²+6y+(3)²)+21 = 0+1

x²+2x +1 + 4(y²+6y+9)+21 = 0+1

x²+2x +1 + 4y²+24y+36+21 = 0+1

x²+2x +1 + 4(y²+6y+9)+21 = 0+1

x²+2x +1 + 4(y+3)²+21 = 0+1

(X+1)²+4(y+3)² = 1 - 21

(X+1)²+4(y+3)² = -20

(X+1)²+4(y+3)² = (√-20)²