Respuesta :
Answer:
The right answer is "1010 V/m".
Explanation:
The given values are:
Intensity,
[tex]I=1350 \ W/m^2[/tex]
[tex]c = 3.00\times 108 \ m/s[/tex]
[tex]\mu_0= 4\pi\times 10^{-7} \ T.m/A[/tex]
Now,
The electric field's maximum value will be:
= [tex]\sqrt{2\times u\times c\times I}[/tex]
On substituting the values in the above formula, we get
= [tex]\sqrt{2\times 4\times \pi\times 10^{-7}\times 3\times 10^8\times 1350}[/tex]
= [tex]\sqrt{32400\times 3.14\times 10^{-7}\times 10^8}[/tex]
= [tex]1010 \ V/m[/tex]
The maximum value of the electric field associated with this radiation is :
- 1010 V/m
Given data :
Intensity ( I ) = 1350 W/m²
C = 3.00 * 10⁸ m/s
The maximum value of the electric field can be calculated using the equation below
[tex]E_{max} = \sqrt{2*u*c*I}[/tex] ----- ( 1 )
where : I = 1350 W/m², μ = 4π * 10⁻⁷, c = 3.00 * 10⁸
Insert values into equation ( 1 )
∴ [tex]E_{max}[/tex] = 1010 V/m.
Hence we can conclude that the maximum value of the electric field is 1010 V/m .
Learn more : https://brainly.com/question/18338019