Find the lateral area and the surface area of the composite solid. Keep answer in exact form.
10 cm
12 cm
1
1
1
1
32 cm
10 cm
Lateral Area
Surface Area

Find the lateral area and the surface area of the composite solid Keep answer in exact form 10 cm 12 cm 1 1 1 1 32 cm 10 cm Lateral Area Surface Area class=

Respuesta :

Answer:

a) Lateral area of the solid = 2011.43 [tex]cm^{2}[/tex]

b) Surface area of the solid = 2544 [tex]cm^{2}[/tex]

Step-by-step explanation:

a) Lateral area of the figure = 2[tex]\pi[/tex]rh

where; r is the radius of the cylinder, and h is its height.

Lateral area of the figure = 2 x [tex]\frac{22}{7}[/tex] x 10 x 32

                                          = 2011.43 [tex]cm^{2}[/tex]

b) The surface area = 2[tex]\pi[/tex]r(r + h) - 2([tex]\frac{1}{2}[/tex] x b x h)

                                 = 2[tex]\pi[/tex]r(r + h) - (b x h)

The height of the isosceles triangle can be determined by applying the Pythagoras theorem to have,

[tex]10^{2}[/tex] = [tex]6^{2}[/tex] + [tex]h^{2}[/tex]

100 = 36 + [tex]h^{2}[/tex]

[tex]h^{2}[/tex] = 100 - 36

   = 64

h = [tex]\sqrt{64}[/tex]

  = 8

h = 8 cm

The surface area of the solid = 2 x [tex]\frac{22}{7}[/tex] x 10 (10 + 32) - 12 x 8

                                                = 2640 - 96

                                                = 2544

The surface area of the solid is 2544 [tex]cm^{2}[/tex].