Respuesta :

Answer: 2,1 & 2

Step-by-step explanation:

[tex]\lim_{x \to c}[3g(x)][/tex] = 2, [tex]\lim_{x \to c}[f(x)+g(x)] = \frac{-1}{3}[/tex],  [tex]\lim_{x \to c}[\frac{f(x)}{g(x)} ] = \frac{1}{2}[/tex]

What is Limit?

"A limit is the value that a function (or sequence) "approaches" as the input (or index) "approaches" some value."

We have Limit functions

[tex]\lim_{x \to c} f(x)[/tex] [tex]= \frac{1}{3}[/tex]

[tex]\lim_{x \to c} g(x)[/tex] = [tex]\frac{2}{3}[/tex]

(i) [tex]\lim_{x \to c} [3g(x)] = 3 \lim_{x \to c} [g(x)][/tex]

= [tex]3[/tex] × [tex]\frac{2}{3}[/tex]

= 2

(ii) [tex]\lim_{x \to c}[f(x)+g(x)][/tex]

= [tex]\lim_{x \to c} f(x)+ \lim_{x \to c} g(x)[/tex]

= [tex]\frac{1}{3}-\frac{2}{3}[/tex]

= [tex]\frac{1-2}{3}[/tex]

= [tex]\frac{-1}{3}[/tex]

(iii) [tex]\lim_{x \to c}[\frac{f(x)}{g(x)} ][/tex]

= [tex]\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

= [tex]\frac{\frac{1}{3} }{\frac{2}{3} }[/tex]

= [tex]\frac{1}{2}[/tex]

∴ [tex]\lim_{x \to c}[3g(x)][/tex] = 2, [tex]\lim_{x \to c}[f(x)+g(x)][/tex] = [tex]\frac{-1}{3}[/tex] , [tex]\lim_{x \to c}[\frac{f(x)}{g(x)} ] = \frac{1}{2}[/tex]

Learn more about Limit and limit functions here

https://brainly.in/question/14344608

#SPJ2