The power generated by an electrical circuit (in watts) as a function of its current ccc (in amperes) is modeled by: P(c)=-20(c-3)^2+180P(c)=−20(c−3) 2 +180

Respuesta :

Answer:

The current that produces maximum power is 3A

Step-by-step explanation:

Given

[tex]P(c) = 20(c - 3)^2[/tex]

Required [Missing from the question]

The current that produces maximum power

First, we represent the function in standard form

[tex]P(c) = 20(c - 3)^2[/tex]

[tex]P(c) = 20(c - 3)(c - 3)[/tex]

Open bracket

[tex]P(c) = 20(c^2 -6c+ 9)[/tex]

[tex]P(c) = 20c^2 -120c+ 180[/tex]

The maximum value of c is:

[tex]Max(c) = \frac{-b}{2a}[/tex]

Where:

[tex]f(x) = ax^2 + b^2 + c[/tex]

By comparison: [tex]P(c) = 20c^2 -120c+ 180[/tex]

[tex]a = 20[/tex]

[tex]b = -120[/tex]

[tex]c = 180[/tex]

So, we have:

[tex]Max(c) = \frac{-b}{2a}[/tex]

[tex]Max(c) = \frac{-(-120)}{2 * 20}[/tex]

[tex]Max(c) = \frac{120}{40}[/tex]

[tex]Max(c) = 3[/tex]