Answer:
(b)
[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex] or [tex]V_2 = \frac{1}{3}\pi r^2h[/tex]
Step-by-step explanation:
Given
[tex]Ratio = \frac{\pi}{4}[/tex]
See attachment for complete question
Required
Determine the volume of the cone
The volume of a square pyramid is:
[tex]V = \frac{a^2h}{3}[/tex]
Where
a = base dimension
From the attachment, the base dimension of the square pyramid is 2r.
So:
[tex]a = 2r[/tex]
The volume becomes;
[tex]V = \frac{(2r)^2h}{3}[/tex]
To calculate the volume of the cone, we simply multiply the given ratio and the volume of the prism.
So, we have:
[tex]V_2 = Ratio * V[/tex]
[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex]
[tex]V_2 = \frac{\pi}{4} * \frac{(2r)^2h}{3}[/tex]
Open bracket;
[tex]V_2 = \frac{\pi}{4} * \frac{4r^2h}{3}[/tex]
Cancel out 4
[tex]V_2 = \pi * \frac{r^2h}{3}[/tex]
The above can be written as:
[tex]V_2 = \frac{1}{3} * \pi r^2h[/tex]
[tex]V_2 = \frac{1}{3}\pi r^2h[/tex]
So, we have:
[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex]
or
[tex]V_2 = \frac{1}{3}\pi r^2h[/tex]