Since the area of the circle is I the area of the square, the

volume of the cone equals

o

I the volume of the pyramid or

(ench

or

srh.

o

the volume of the pyramid or (2n
o

the volume of the pyramid or

(2nm or s?h.

o

the volume of the pyramid or : ( 20%(h) or şir?h.

Respuesta :

Answer:

(b)

[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex] or [tex]V_2 = \frac{1}{3}\pi r^2h[/tex]

Step-by-step explanation:

Given

[tex]Ratio = \frac{\pi}{4}[/tex]

See attachment for complete question

Required

Determine the volume of the cone

The volume of a square pyramid is:

[tex]V = \frac{a^2h}{3}[/tex]

Where

a = base dimension

From the attachment, the base dimension of the square pyramid is 2r.

So:

[tex]a = 2r[/tex]

The volume becomes;

[tex]V = \frac{(2r)^2h}{3}[/tex]

To calculate the volume of the cone, we simply multiply the given ratio and the volume of the prism.

So, we have:

[tex]V_2 = Ratio * V[/tex]

[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex]

[tex]V_2 = \frac{\pi}{4} * \frac{(2r)^2h}{3}[/tex]

Open bracket;

[tex]V_2 = \frac{\pi}{4} * \frac{4r^2h}{3}[/tex]

Cancel out 4

[tex]V_2 = \pi * \frac{r^2h}{3}[/tex]

The above can be written as:

[tex]V_2 = \frac{1}{3} * \pi r^2h[/tex]

[tex]V_2 = \frac{1}{3}\pi r^2h[/tex]

So, we have:

[tex]V_2 = \frac{\pi}{4} [ \frac{(2r)^2h}{3}][/tex]

or

[tex]V_2 = \frac{1}{3}\pi r^2h[/tex]

Ver imagen MrRoyal