Respuesta :
Answer:
[tex]a) A\simeq17204.28[/tex]
[tex]b) A\simeq29598.74[/tex]
[tex]c)A\simeq50922.51[/tex]
Step-by-step explanation:
The amount formula in compound interest is:
[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]
where:
P = principal amount
r = annual interest
n = number of compounding periods
t = number of years
We already know that:
P = $10000
[tex]r = 11\% = \frac{11\%}{100\%}=0.11[/tex]
n = 4 (quarterly in a year)
a ) t = 5 years
[tex]A=10000(1+\frac{0.11}{4} )^{(4)(5)}\\\\A=10000(1+\frac{0.11}{4} )^{20}\\\\A=17204.28431\\\\A\simeq17204.28[/tex]
b) t = 10 years
[tex]A=10000(1+\frac{0.11}{4} )^{(4)(10)}\\\\A=10000(1+\frac{0.11}{4} )^{40}\\\\A=29598.73987\\\\A\simeq29598.74[/tex]
c) t = 15 years
[tex]A=10000(1+\frac{0.11}{4} )^{(4)(15)}\\\\A=10000(1+\frac{0.11}{4} )^{60}\\\\A=50922.51361\\\\A\simeq50922.51[/tex]
Answer:
Solution given;
principal [p]=$10000
rate[r]=11%
time[t]= 5 years
we have
compound amount quarterly =P(1+r/400)^4t
=$10000(1+11/400)^4×5=$17204.28431