Respuesta :

Given:

The area of a rectangle is 99 square yd.

Length of the rectangle = 7 yd more than twice the width.

To find:

The dimensions of the rectangle.

Solution:

Let x be the width of the rectangle. Then, length of the rectangle is:

[tex]Length=2x+7[/tex]

Area of a rectangle is:

[tex]A=length\times width[/tex]

[tex]A=(2x+7)\times x[/tex]

[tex]A=2x^2+7x[/tex]

The area of a rectangle is 99 square yd.

[tex]2x^2+7x=99[/tex]

[tex]2x^2+7x-99=0[/tex]

Splitting the middle term, we get

[tex]2x^2+18x-11x-99=0[/tex]

[tex]2x(x+9)-11(x-9)=0[/tex]

[tex](x+9)(2x-11)=0[/tex]

Using zero product property, we get

[tex](x+9)=0[/tex] and [tex](2x-11)=0[/tex]

[tex]x=-9[/tex] and [tex]x=\dfrac{11}{2}[/tex]

[tex]x=-9[/tex] and [tex]x=5.5[/tex]

Width of the rectangle cannot be negative. So, [tex]x=5.5[/tex] yd.

Now, the length of the rectangle is:

[tex]Length=2x+7[/tex]

[tex]Length=2(5.5)+7[/tex]

[tex]Length=11+7[/tex]

[tex]Length=18[/tex]

Therefore, the length of the rectangle is 18 yd and the width of the rectangle is 5.5 yd.